首页|天辰注册_测速登录平台
首页|天辰注册_测速登录平台
公司地址:湖南省长沙市天辰注册阀门制造股份有限公司
销售热线:13823645238
联 系 人:李天辰
娱乐网址:www.delisl.com
集团邮箱:7535077@168.com
香格里拉娱乐-地址
作者:管理员    发布于:2025-04-19 19:59    文字:【】【】【
摘要:香格里拉娱乐-地址 ?仪器信息网疏水阀专题为您提供2025年最新疏水阀价格报价、厂家品牌的相关信息, 包括疏水阀参数、型号等,不管是国产,还是进口品牌的疏水阀您都可以在这里

  香格里拉娱乐-地址?仪器信息网疏水阀专题为您提供2025年最新疏水阀价格报价、厂家品牌的相关信息, 包括疏水阀参数、型号等,不管是国产,还是进口品牌的疏水阀您都可以在这里找到。 除此之外,仪器信息网还免费为您整合疏水阀相关的耗材配件、试剂标物,还有疏水阀相关的最新资讯、资料,以及疏水阀相关的解决方案。

  应众多成器智造Challenge Jump D系列智能泵粉丝的要求,成器智造技术支持团队与大家分享一个话题:如何才能延长隔膜泵的使用寿命?并使其维持性能稳定。针对具体问题,我们总结了如下几点:问题1:四元隔膜泵的常见耗材--膜片的使用寿命是多久?答:我司智能四元隔膜泵的泵头和膜片均采用德国Quattroflow原厂进口,其官方推荐膜片的使用寿命为1000小时,但这并不是一个最长时限。首先,与用户具体的使用工况相关,如传输料液的温度、压力等。其次,每次使用过后及时而正确的保养也非常重要。比如每次使用后及时清洗,避免因料液结晶产生的不溶性颗粒研磨导致膜片破裂,长期不用时可使用0.1N的NaHO或20%的乙醇进行保存。另外,需要注意的是,在运行仪器前,切记不可关死出液端背压阀,否则会造成膜片因瞬间压力增大而破裂。问题2:什么情况下需要更换四元隔膜泵膜片?答:在隔膜泵出现漏液或流速偏差较大时,则很大可能是膜片破裂,需要拆开泵腔检查并更换膜片。更换完毕安装时需要注意偏心轴卡环的方向要与底座安装孔一致,先紧固固定泵头的四个螺丝,再将偏向轴的卡环拧紧,偏心轴的卡环如果没有拧紧,则会造成泵头噪音增大、流量不准,若长时间运行会造成泵头损坏。问题3:运行过程中,可以快速关闭背压阀吗?答:除有特殊的实验要求外,不可快速关闭背压阀,如果压力控制系统没有开启(或不存在压力控制系统),会因瞬间高压直接将膜片击穿。但如果您使用的是Challenge Jump智能四元隔膜泵,具有压力保护和报警功能,是可以完美解除这个烦恼,我们可以通过设置压力上限,让系统超压前及时停机,避免膜片的损坏。问题4:第一次使用四元隔膜泵,即便加大流速为何仍无法吸液?答:四元隔膜泵由于不使用机械密封,可以实现干吸运行。隔膜泵第一次运行时由于膜片处于干燥状态,在较低的转速下可能也会出现难以自吸的情况;建议在首次运行时,用注射器在泵腔入口注入纯水将膜片润湿,以达到泵腔内更好的密闭效果就实现自吸并正常运行了。问题5:隔膜泵选择管线有那些注意事项呢?答:四元隔膜泵在运行前,需要按照设计标准推荐的管线内径尺寸配备合适的管路,入口端的管路尺寸一定要和泵接口尺寸一致,并且在入口端尽量不要安装过滤器等阻碍吸入的设备,确保吸入端流路畅通。问题6:四元隔膜泵CIP和SIP有哪些注意事项?CIP-在线.第一步:用纯水预冲洗泵,直到残留的产品已被除去。 2.第二步:用 0.5M NaOH(约50℃),在80%最大转速下清洗约 30 分钟。注意:需要在清洗之前检查周围条件(如管道直径,系统压力等级等)是否允许以此速度运行泵。 3.第三步:使用纯水冲洗,直到电导率为0或pH值=7。注意:1.在线清洗(CIP)介质的温度不要超过90°C(194°F),最大压力不要超过4 bar (58 PSI),流量不应高于所用泵的最大流量的 80%。 2.请检查产品接液部件对使用的在线清洗(CIP)介质的耐化学性。 3.泵内的流体只能在指定方向上流动,即从入口端到出口端。由于止回阀不会打开,因此无法反向冲洗泵。 SIP-原位灭菌 1.对于原位灭菌,泵腔必须安装在泵驱动环上,在原位灭菌过程中,泵禁止运行,泵的温度不得超过 130°C(266°F),过程不应超过 30 分钟。 2.泵腔在室温下自然冷却 3.每个原位灭菌(SIP)循环后,必须验证泵腔前端紧固螺栓的扭矩4.如果遵循以上注意事项,相同的弹性体部件(隔膜、阀门、O 型圈)可以进行 6-8 次原位灭菌(SIP)循环。原位灭菌(SIP)循环次数的最大值取决于进一步的工艺条件(例如介质,温度,流量,背压等)。5.在原位灭菌(SIP)工艺之后,泵可能残留一定量的不可回收的冷凝水,需要将储存的冷凝水去除。再此过程中,可以将泵安装在垂直位置,将泵腔向下摆放,可完全排空。或使用吹气冷却,并通过蒸汽疏水阀将残留的冷凝水排出系统。压缩空气需要在系统中保持恒定的过压,以避免由冷凝蒸汽引起的真空。 需要注意的是原位灭菌(SIP)会降低膜片的使用寿命,在工艺条件允许的情况下可以尽量减少原位灭菌(SIP)的次数,这会很大程度的延长膜片寿命。成器智造拥有强大的售前、售后技术支持团队,可以帮助您解决工艺中遇到的各种问题,为您的研发和生产保驾护航。

  有机溶剂在实验室冷冻干燥机中的应用冻干应用”1介绍冷冻干燥在设计之初是仅使用水为溶剂。随着新应用的不断涌现,在水溶液中不溶的物质在化学应用中变得越来越普遍。因此,冷冻干燥越来越多地与有机溶剂而不是水一起使用。在样品被冷冻干燥之前,样品往往在研究和开发中使用到无机酸和碱。通常在冻干过程开始之前,必须充分考虑这些类型的样品在冻干过程中的可能发生的情况。2硬件冷冻干燥机包含塑料(丙烯干燥室)、橡胶(密封件和垫圈)和不锈钢(冷凝器),这些材料可能会受到无机和有机溶剂的不利影响。在开始冻干前,检查系统的状态非常重要,尤其是检查密封件、不锈钢部件和丙烯干燥室,并更换磨损的部分。3冻干过程在冷冻干燥过程中,许多含水样品可以很容易地处理,并且对于大多数实验而言,水将完全收集在冷凝器上。但有机溶剂的情况可能大不相同——许多有机溶剂的冰点很低;有些温度远低于冷凝器表面温度。为了了解溶剂是否可以冷冻干燥,需要使用溶剂的蒸气压曲线来验证四个主要问题。“溶剂如何被冻结?”即哪种方法可以达到足够低的温度,使样品完全凝固。“溶剂在什么浓度下可以冷冻?”即溶剂是否需要稀释才能凝固。“冷凝器能收集溶剂吗?”即冷凝器的温度需要比溶剂的凝固点温度低15-20°C。“在这个过程中,样品会保持在冷冻状态吗?”即我们能否保持足够低的压力,使样品保持凝固状态。有机溶剂很难冷冻。它们通常需要在冷冻前用水稀释,或者使用液氮来达到足够低的温度。许多有机溶剂的冰点很低,即使是 -85°C 或 -105°C 的冷凝器也无法收集它们。因此在蒸汽收集方面,-55°C 的冷凝器与更冷的冷凝器之间的能力差异并不大,如 表1所示。表1. 常用溶剂的三相点溶剂类型三相点温度 ℃三相点压力 mbar水06.1乙腈-43.91.67丙酮-94.72.33*10-2甲醇-97.71.86*10-3乙醇-123.154.3*10-6如果溶剂没有被捕获在冷凝器中,它将以蒸汽的形式通过泵离开腔室。当溶剂蒸汽离开系统时,选择合适的泵是至关重要的。涡旋泵(例如Lyovapor L-200配置的爱德华兹涡旋泵nXds 6ic)建议所有涉及有机溶剂冷冻干燥应用使用。由于有机溶剂的冷冻温度和三相点较低,即使在极限真空下,也很难足够快地排出系统,同时保持系统中足够低的压力以避免溶剂熔化。对于稀释后的溶液,通常会看到有机溶剂的熔化和蒸发,而水保持冻结状态(下面溶剂表中的黄色区域)。如果溶剂量过高,系统将无法维持所需的压力,所有溶剂都会熔化和蒸发(溶剂表中的红色区域),则必须停止冻干进程。4如何处理实验室冷冻干燥机中的有机溶剂如果可能的话,在使用旋转蒸发器进行冷冻干燥之前,尽可能多地去除溶剂。亚克力干燥筒可能会出现少量蚀刻,它不会影响冻干进程,但也可能需要定期更换。良好和定期的设备维护是非常有必要的,冷冻干燥机应在每次使用后清洗。不要让冷凝液留在冷凝器中,在疏水阀打开的情况下,尽快进行仪器的除霜步骤。用清水冲洗冷凝器,确保其清洁干燥。使用干泵处理除水以外的溶剂,并确保泵的排气口位于通风柜中,以避免实验者接触到溶剂。下面显示不同型号的冻干机对应的有机溶剂应用范围,以及它们是否可以通过冻干去除。可根据应用需求选择合适的冻干机。_样品可以被冷冻干燥,升华正常进行。_干燥室中的压力不能设置到足够低的值以保持溶剂的固体形式。有机溶剂会熔化,而水会保持冰的形态。有机溶剂会蒸发,压力会增加,直到完全蒸发。然后冰就会升华。尽管溶剂不能升华,但蒸发对许多应用来说已经足够了。_无法进行冻干。*取决于压力设置冷冻干燥机 L-200 LyovaporTM L-200 冷阱 -55℃溶剂种类及浓度100%50%30%10%≤5%乙酸_____丙酮_____乙腈_____二甲亚砜_____乙醇_____异丙醇_____甲醇_____三氟乙酸_____冷冻干燥机 L-250 LyovaporTM L-250 冷阱 -85℃溶剂种类及浓度100%50%30%10%≤5%乙酸_____丙酮_____乙腈_____二甲亚砜_____乙醇_____异丙醇_____甲醇_____三氟乙酸_____叔丁醇_____甲酸_____冷冻干燥机 L-300 LyovaporTM L-250 冷阱 -105℃溶剂种类及浓度100%50%30%10%≤5%乙酸_____丙酮_____乙腈_____二甲亚砜_____乙醇_____异丙醇_____甲醇_____三氟乙酸_____叔丁醇_____冷冻干燥机LyovaporTM 多种模块化干燥室可供选择

  KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS研究背景天然木材内因含有羟基等亲水基团,导致其吸水后产生膨胀、开裂、腐朽、变形等问题。一些环境因素,如湿度和酸雨,严重影响木材的耐用性和使用性能,对木制品造成损坏。将仿生疏水概念引入木材表面改良领域,在构建疏水表面的同时也赋予木材自清洁、耐化学性等特性,可提高木材在恶劣条件下的稳定性和耐久性,延长木材的使用寿命。本研究选择人工林杨木来制备疏水表面,通过自组装在木材表面构建TA-Fe III复合涂层,利用TA-Fe III复合涂层的高粘附性和二次反应活性将Ag+还原为Ag纳米颗粒沉积在木材表面,设计构建了物理化学特性稳固型木材疏水表面,并对其表面形貌结构、接触角及疏水表面的稳固性进行测试表征。 疏水木材的制备过程实验方法与仪器:本文采用KRÜSS DSA25接触角分析仪DSA25S接触角分析仪图片结果与讨论1.接触角测试如图1所示,处理前后木材表面接触角的变化。未改性木材表面的接触角为52.0°,这是由于木材表面的有大量亲水基团和丰富的孔隙结构,使木材表现出较强的亲水性,随着接触时间延长,接触角迅速下降,水滴很快渗入到木材中。经过疏水处理的木材试样,在180s内均保持在138.0°以上,表现出了优异的疏水性能。随着自组装次数的增加,TA-Fe III/木材试件的接触角从138.2°增加到了143.7°,TA-Fe III/Ag/木材试件的接触角从142.3°增加到了146.7°。在相同的处理次数下,TA-Fe III/Ag/木材试件的接触角高于TA-Fe III/木材试件,证明Ag纳米颗粒在木材表面沉积构建了良好的表面粗糙度,使得木材表面疏水性能得到明显提高。图1 木材改性前后的接触角2.化学耐久性测试疏水木材表面的耐化学性是影响疏水表面的重要因素。研究表明,强酸、强碱、有机溶剂浸泡等恶劣环境下都会影响疏水木材的疏水效果,使得木材表面接触角降低,逐渐丧失疏水性能。将疏水木材分别浸没于不同的化学试剂中 ( pH=2. 0的HCI溶液,pH=12. 0的NaOH溶液,正己烷,丙酮,乙醇,DMF) 中24h,在紫外光照射以及用开水煮沸后,疏水木材接触角均高于135. 0°(图2) ,说明在恶劣环境下,疏水木材依然可以具有优异的稳定性和耐久性。将疏水木材进行超声清洗,木材表面的接触角几乎无变化,证明疏水涂层和木材间有稳固的粘合性能。以上结果证明,所制备的疏水木材即使在恶劣、严苛的条件下,也可以保持良好的疏水性,也证明了该疏水涂层的化学耐久性和环境稳定性。 图2 疏水木材耐化学性测试结论本研究基于TA-Fe Ⅲ多次自组装在木材表面构建疏水表面,在温和、环保且不会破坏试件本身的条件下,将涂层完全覆盖于基材表面。多次自组装和利用复合涂层二次反应活性还原Ag+粒子、接枝疏水长链,可以使得木材表面被涂层完全覆盖,并逐步完善木材表面的粗糙度,使得木材表面具有更加优异的疏水性能。随着自组装次数的增加,TA-Fe III /木材试件的接触角从138. 2°增加到了143.7°,TA-Fe III/Ag /木材试件的接触角从142.3°增加到了146.7°。此外,构建的仿生疏水表面具有优异的化学耐久性和环境稳定性,即使在经过恶劣环境后,疏水木材接触角均高于135.0°,依然可以保持优异的疏水性能。参考文献傅敏,李明剑,何文清等.基于TA-Fe~Ⅲ还原Ag离子构建木材疏水表面.化学研究与应用,2023,35(01):75-82.

  疏水层析填料Butyl Tanrose 4FF、Butyl Tanrose 6HP、Butyl-S Tanrose 6FF、Octyl Tanrose 4FF、Octyl Tanrose 6HP、Phenyl Tanrose 6HP、Phenyl Tanrose 6FF(Low Sub)和Phenyl Tanrose 6FF(High Sub)都属于疏水层析介质(Hydrophobic Interaction Chromatography,简称HIC),主要通过分子表面疏水性差别进行分离纯化的一类疏水层析介质。广泛用于生物制药和生物工程下游蛋白质和多肽的分离纯化。本产品五种离子交换树脂均可耐受较高的流速及更高的化学稳定性,适合实验室及工业大规模纯化。4FF/6FF系列填料技术参数HP系列填料技术参数疏水层析预装柱PreCot疏水层析预装柱用于少量样品纯化,除了配合层析系统使用也可配注射器上样接头使用注射器进行简单纯化。装填介质:疏水作用层析介质

  ✦疏水层析填料✦Butyl Tanrose 4FF、Butyl Tanrose 6HP、Butyl-S Tanrose 6FF、Octyl Tanrose 4FF、Octyl Tanrose 6HP、Phenyl Tanrose 6HP、Phenyl Tanrose 6FF(Low Sub)和Phenyl Tanrose 6FF(High Sub)都属于疏水层析介质(Hydrophobic Interaction Chromatography,简称HIC),主要通过分子表面疏水性差别进行分离纯化的一类疏水层析介质。广泛用于生物制药和生物工程下游蛋白质和多肽的分离纯化。本产品五种离子交换树脂均可耐受较高的流速及更高的化学稳定性,适合实验室及工业大规模纯化。4FF/6FF系列填料技术参数HP系列填料技术参数✦疏水层析预装柱✦PreCot疏水层析预装柱用于少量样品纯化,除了配合层析系统使用也可配注射器上样接头使用注射器进行简单纯化装填介质:疏水作用层析介质✦✦技术指标

  仪器信息网讯 2018年1月1日起,《中华人民共和国环境保护税法》和新版《中华人民共和国水污染防治法》正式开始施行。作为构建环境保护法律体系的重要构成,两部法律将有效推动环境领域污染防治,同时给分析仪器行业吹来利好东风。首先是《环保税法》,多项条款中都明确表示了监测设备的重要性。如《环保税法》第十条明确规定,纳税人安装使用符合国家规定和监测规范的污染物自动监测设备的,按照污染物自动监测数据计算;纳税人未安装使用污染物自动监测设备的,按照监测机构出具的符合国家有关规定和监测规范的监测数据计算。同时,为鼓励纳税人加大环境保护建设的投入力度,《环保税法》第二十四条中写到,对纳税人用于污染物自动监测设备的投资予以资金和政策支持。根据2008年1月1日施行的《企业所得税法》,企业购置环境保护专用设备的投资额,可以按照一定比例实行税额抵免。国务院颁布的《企业所得税法实施条例》中进一步明确,企业购置并实际使用列入《环境保护专用设备企业所得税优惠目录》范围内的环境保护专用设备的,该专用设备投资额的10%可以从企业当年的应纳税额中抵免;当年不足抵免的,可以在后5个纳税年度中结转抵免。业内人士指出,在《环保税法》实施之后,监测数据将成为增减相应税收的关键,这也意味着在该税法实施落实的过程中,监测仪表以及第三方监测服务将扮演着极其重要的角色。仪器信息网相关新闻:习主席令:环保税2018年1月1日起征(附税法全文及重点标注)作为我国水环境的根本法律,新修订的《水污染防治法》(以下简称新水法)将于2018年1月1日起正式施行。与原法相比,新水法作出了55处重大修改,涉及河长制、农业农村水污染防治、饮用水保护、环保监测等内容。河长制河长制是河湖管理工作的一项制度创新。一直以来,河流污染治理由于涉及领域、部门比较多,难以形成合力。此次新水法明确规定,地方各级人民政府对本行政区域的水环境质量负责;增加 “省、市、县、乡建立河长制,分级分段组织领导本行政区域内水资源保护等工作”、“有关市、县级人民政府制定限期达标规划”。同时规定,“市、县级人民政府每年向本级人民代表大会或者其常务委员会报告水环境质量限期达标规划执行情况,并向社会公开。”“河长制”将促进地方政府加强对辖区内河道的监测和治理,从而释放建设与运维市场空间,推动水质监测仪器设备订单增长。总量控制和排污许可制度总量控制制度和排污许可制度是本次水污染防治法修改的另一项重要内容。新水法规定:国家对重点水污染物排放实施总量控制制度。直接或者间接向水体排放工业废水和医疗污水以及其他按照规定应当取得排污许可证方可排放的废水、污水的企业事业单位和其他生产经营者,应当取得排污许可证;城镇污水集中处理设施的运营单位,也应当取得排污许可证。排污许可证应当明确排放水污染物的种类、浓度、总量和排放去向等要求。在水污染物的追本溯源、实时监控方面,水质监测仪器设备将大有可为。环境监测环境监测是环境保护的重要基础。为了避免数据造假现象,新水法明确规定,企业要保证监测仪器的正常运行,禁止篡改伪造监测数据。没有安装监控装备、没有与环保部门联网或者没有保证其正常运行的会被处以2万元以上20万元以下的罚款,情节严重的、逾期不整改的,将责令企业停产整顿。如果用篡改数据掩盖非法排污,并由此发生污染,还会构成刑事犯罪,将被依法追究刑事责任。仪器信息网相关新闻:新《水污染防治法》全文及亮点解读

  12月30日,国务院总理李克强日前签署国务院令,公布《中华人民共和国环境保护税法实施条例》(以下简称《条例》),自2018年1月1日起与环境保护税法同步施行。《中华人民共和国环境保护税法》于2016年12月25日第十二届全国人民代表大会常务委员会第二十五次会议通过,自2018年1月1日起施行。这部法律对于保护和改善环境,减少污染物排放,推进生态文明建设,具有十分重要的意义。为保障环境保护税法顺利实施,有必要制定实施条例,细化征税对象、计税依据、税收减免、征收管理的有关规定,进一步明确界限、增强可操作性。《条例》对《环境保护税税目税额表》中其他固体废物具体范围的确定机制、城乡污水集中处理场所的范围、固体废物排放量的计算、减征环境保护税的条件和标准,以及税务机关和环境保护主管部门的协作机制等做了明确规定。《条例》明确,2003年1月2日国务院公布的《排污费征收使用管理条例》同时废止。中华人民共和国国务院令第693号现公布《中华人民共和国环境保护税法实施条例》,自2018年1月1日起施行。总理李克强2017年12月25日中华人民共和国环境保护税法实施条例第一章总则第一条根据《中华人民共和国环境保护税法》(以下简称环境保护税法),制定本条例。第二条环境保护税法所附《环境保护税税目税额表》所称其他固体废物的具体范围,依照环境保护税法第六条第二款规定的程序确定。第三条环境保护税法第五条第一款、第十二条第一款第三项规定的城乡污水集中处理场所,是指为社会公众提供生活污水处理服务的场所,不包括为工业园区、开发区等工业聚集区域内的企业事业单位和其他生产经营者提供污水处理服务的场所,以及企业事业单位和其他生产经营者自建自用的污水处理场所。第四条达到省级人民政府确定的规模标准并且有污染物排放口的畜禽养殖场,应当依法缴纳环境保护税;依法对畜禽养殖废弃物进行综合利用和无害化处理的,不属于直接向环境排放污染物,不缴纳环境保护税。第二章计税依据第五条应税固体废物的计税依据,按照固体废物的排放量确定。固体废物的排放量为当期应税固体废物的产生量减去当期应税固体废物的贮存量、处置量、综合利用量的余额。前款规定的固体废物的贮存量、处置量,是指在符合国家和地方环境保护标准的设施、场所贮存或者处置的固体废物数量;固体废物的综合利用量,是指按照国务院发展改革、工业和信息化主管部门关于资源综合利用要求以及国家和地方环境保护标准进行综合利用的固体废物数量。第六条纳税人有下列情形之一的,以其当期应税固体废物的产生量作为固体废物的排放量:(一)非法倾倒应税固体废物;(二)进行虚假纳税申报。第七条应税大气污染物、水污染物的计税依据,按照污染物排放量折合的污染当量数确定。纳税人有下列情形之一的,以其当期应税大气污染物、水污染物的产生量作为污染物的排放量:(一)未依法安装使用污染物自动监测设备或者未将污染物自动监测设备与环境保护主管部门的监控设备联网;(二)损毁或者擅自移动、改变污染物自动监测设备;(三)篡改、伪造污染物监测数据;(四)通过暗管、渗井、渗坑、灌注或者稀释排放以及不正常运行防治污染设施等方式违法排放应税污染物;(五)进行虚假纳税申报。第八条从两个以上排放口排放应税污染物的,对每一排放口排放的应税污染物分别计算征收环境保护税;纳税人持有排污许可证的,其污染物排放口按照排污许可证载明的污染物排放口确定。第九条属于环境保护税法第十条第二项规定情形的纳税人,自行对污染物进行监测所获取的监测数据,符合国家有关规定和监测规范的,视同环境保护税法第十条第二项规定的监测机构出具的监测数据。第三章税收减免第十条环境保护税法第十三条所称应税大气污染物或者水污染物的浓度值,是指纳税人安装使用的污染物自动监测设备当月自动监测的应税大气污染物浓度值的小时平均值再平均所得数值或者应税水污染物浓度值的日平均值再平均所得数值,或者监测机构当月监测的应税大气污染物、水污染物浓度值的平均值。依照环境保护税法第十三条的规定减征环境保护税的,前款规定的应税大气污染物浓度值的小时平均值或者应税水污染物浓度值的日平均值,以及监测机构当月每次监测的应税大气污染物、水污染物的浓度值,均不得超过国家和地方规定的污染物排放标准。第十一条依照环境保护税法第十三条的规定减征环境保护税的,应当对每一排放口排放的不同应税污染物分别计算。第四章征收管理第十二条税务机关依法履行环境保护税纳税申报受理、涉税信息比对、组织税款入库等职责。环境保护主管部门依法负责应税污染物监测管理,制定和完善污染物监测规范。第十三条县级以上地方人民政府应当加强对环境保护税征收管理工作的领导,及时协调、解决环境保护税征收管理工作中的重大问题。第十四条国务院税务、环境保护主管部门制定涉税信息共享平台技术标准以及数据采集、存储、传输、查询和使用规范。第十五条环境保护主管部门应当通过涉税信息共享平台向税务机关交送在环境保护监督管理中获取的下列信息:(一)排污单位的名称、统一社会信用代码以及污染物排放口、排放污染物种类等基本信息;(二)排污单位的污染物排放数据(包括污染物排放量以及大气污染物、水污染物的浓度值等数据);(三)排污单位环境违法和受行政处罚情况;(四)对税务机关提请复核的纳税人的纳税申报数据资料异常或者纳税人未按照规定期限办理纳税申报的复核意见;(五)与税务机关商定交送的其他信息。第十六条税务机关应当通过涉税信息共享平台向环境保护主管部门交送下列环境保护税涉税信息:(一)纳税人基本信息;(二)纳税申报信息;(三)税款入库、减免税额、欠缴税款以及风险疑点等信息;(四)纳税人涉税违法和受行政处罚情况;(五)纳税人的纳税申报数据资料异常或者纳税人未按照规定期限办理纳税申报的信息;(六)与环境保护主管部门商定交送的其他信息。第十七条环境保护税法第十七条所称应税污染物排放地是指:(一)应税大气污染物、水污染物排放口所在地;(二)应税固体废物产生地;(三)应税噪声产生地。第十八条纳税人跨区域排放应税污染物,税务机关对税收征收管辖有争议的,由争议各方按照有利于征收管理的原则协商解决;不能协商一致的,报请共同的上级税务机关决定。第十九条税务机关应当依据环境保护主管部门交送的排污单位信息进行纳税人识别。在环境保护主管部门交送的排污单位信息中没有对应信息的纳税人,由税务机关在纳税人首次办理环境保护税纳税申报时进行纳税人识别,并将相关信息交送环境保护主管部门。第二十条环境保护主管部门发现纳税人申报的应税污染物排放信息或者适用的排污系数、物料衡算方法有误的,应当通知税务机关处理。第二十一条纳税人申报的污染物排放数据与环境保护主管部门交送的相关数据不一致的,按照环境保护主管部门交送的数据确定应税污染物的计税依据。第二十二条环境保护税法第二十条第二款所称纳税人的纳税申报数据资料异常,包括但不限于下列情形:(一)纳税人当期申报的应税污染物排放量与上一年同期相比明显偏低,且无正当理由;(二)纳税人单位产品污染物排放量与同类型纳税人相比明显偏低,且无正当理由。第二十三条税务机关、环境保护主管部门应当无偿为纳税人提供与缴纳环境保护税有关的辅导、培训和咨询服务。第二十四条税务机关依法实施环境保护税的税务检查,环境保护主管部门予以配合。第二十五条纳税人应当按照税收征收管理的有关规定,妥善保管应税污染物监测和管理的有关资料。第五章附则第二十六条本条例自2018年1月1日起施行。2003年1月2日国务院公布的《排污费征收使用管理条例》同时废止。

  岛津制作所(SSI)近日发布了ATHAP-MALDI基质方法工具包,用于改进对包含跨膜疏水蛋白和多肽的分析能力。传统的LC-MS/MS和MALDI-TOF 很难分析包含疏水基团的膜蛋白。烷基化三羟基苯乙酮(ATHAP)新基质在此方法中发挥了特殊的作用。许多疾病的生物标志物是包含疏水基团的膜蛋白。之前用液质和MALDI-TOF的检测效果都不理想,这类蛋白和多肽一般不被目标分析物列表所包含。由于疏水多肽的低溶解性,其难于在液相质谱中得到检测。采用如α-氰基-4-羟基肉桂酸 (CHCA)、芥子酸(SA)、二羟基苯甲酸(DHB)等传统基质的MALDI法离子化效率较低,从而导致用MALDI-TOF检测这些物质灵敏度很差。“疏水性是将横跨膜片段整合到脂质双分子层的主要动力。这些新的基质工具包为科学家分析这些重要物质的生物和物理化学性质提供了前所未有的可能性。”岛津公司Scott Kuzdzal博士说。“这些工具包可以提高分析灵敏度,开拓对从抗菌肽到癌症蛋白标志物等关键疏水性分子结构和功能的研究。”ATHAP基质由广岛大学和田中耕一尖端科技实验室联合开发,并授权给岛津制作所。本研究得到日本学术振兴会(JSPS) “世界领先创新科技研发资助项目 (FIRST Program) ”的赞助支持。编译:郭浩楠

  摘要石墨类碳材料在电极,吸附,催化载体以及固体润滑剂方面有着极其广泛的应用。了解它们和水之间的相互作用对于基础材料的表征以及实际装置的制备都起着关键作用。曾经,普遍的观点都认为石墨碳材料表面是疏水的。然而,美国匹兹堡大学Kozbial等人发表在国际顶级杂志Accounts of Chemical Research上的最新研究发现:石墨表面本质上是亲水的,而由于表面吸附了空气环境中的烃类污染物,才造成石墨烯表面的疏水性。研究回顾在石墨烯的各类应用中,表面性能的精准控制(例如黏附、摩擦和表面能)是非常必要的。润湿性不仅是表征表面性能的重要参数,而且还直接影响了电子掺杂和载体可移动性。在1940年, Fowkes and Harkins首次报道了天然石墨的接触角为85°度左右。其他学者研究不同石墨类碳材料时得出的结果也与该值相接近。碳纳米管以及石墨烯的润湿性研究结果也表明他们都是疏水的。所有的这些研究都表明sp2杂化形式的石墨类碳材料都是疏水的。润湿性的不同观点:1. Tadros等人采用捕泡法测试出表面干净的各项同性的石墨,其前进角为63° (53 °C)。但他们的工作主要集中在研究等温吸附上,而不是润湿性,所得出结论不十分可靠。2. Schrader发现石墨在室温下和超真空条件下被剥离后的接触角值为35°。但是,超高真空会造成水的蒸发,造成较低的接触角。进一步提出石墨疏水是由于石墨被疏水的有机物污染。研究思路为了解决以上问题,美国匹兹堡大学Kozbial教授重新设计了实验,并用KRÜSS DSA100接触角测试仪表征材料的接触角和表面能。室温下,研究了新鲜石墨烯和剥离的高度有序热解石墨表面的接触角与时间的变化。结果表明暴露在空气中时,接触角与时间具有相依性(图1)。之前研究者们也用同样的方法研究了金的润湿性,由于金的表面吸附了空气中的烃类污染物,造成金的疏水性。而二氧化硅和稀土氧化物等陶瓷材料的接触角也表现出同样的性质。因此Kozbial教授提出,石墨类碳材料是否也因为表面吸附了空气中的烃类污染物才变得疏水呢?图1.铜基石墨烯,镍基石墨烯和石墨的水接触角数据。(1)衰减全反射红外光谱分析利用衰减全反射红外光谱法,采集了新鲜和老化的石墨烯的表面数据。结果表明,石墨烯在空气中暴露10分钟后,出现了明显的亚甲基(−CH2−)的峰(图2a),这说明有烃类物质吸附在了石墨烯表面。此外,亚甲基峰强度随着暴露时间的增长而变强,同时接触角和ATR-FTIR的数据也表现出相似的趋势。如下:干净表面的石墨烯具有较低的接触角和较弱的亚甲基峰接触角和亚甲基峰强度随着在空气中暴露的时间增长而增加,60分钟之后都不再发生明显的变化。(2)XPS分析采集新鲜石墨烯和老化2天石墨烯的C1s XPS数据。285eV附近的强峰来自于石墨烯碳原子(图2b)。不同的是,在285.7 eV处有一个更正的峰以及在287.6 eV附近出现了一个肩峰,这都说明了烃类物质的存在。随后也采集了新鲜石墨和老化2天石墨的ATR-FTIR数据。因此,对于石墨烯和石墨而言,新合成或者新剥离得到的表面是没有烃类物质的,而在空气中暴露老化之后,是有烃类物质吸附的。图2. 铜基石墨烯的(a) ATR-FTIR和(b) XPS图谱,石墨的ATR-FTIR图谱(c),(d)烃类物质吸附膜厚度和接触角石墨在空气暴露时间的变化关系(3)椭圆偏振分析通过该技术研究发现,石墨表面开始暴露在空气中后,烃类物质吸附膜的厚度逐渐增加,在60分钟时达到峰值,随后曲线出现平台。引起了这一变化时,石墨表面生成了∼6Å厚的烃类物质层。综上,ATR-FTIR,XPS以及椭圆偏振法都表明石墨表面本质上是温和亲水的,吸附烃类物质后才变的疏水。(4)表面能分析表面能是固体物质重要的表面性质,它不仅决定材料表面的润湿性,更深深影响着粘附性、摩擦性以及其他的表面或界面性能。基于四种测试液体的接触角数据,通过三种常见的模型Neumann,Fowkes和Owens−Wendt计算了新鲜和老化石墨表面的表面能。图3表明石墨烯和石墨的表面能随着暴露时间增长而逐渐降低。新鲜表面的表面能最大,老化表面的表面能最小。造成这种结果的原因是空气中烃类物质的吸附过程带来的热力学驱动力降低了总表面能。图3 新鲜和老化石墨烯,石墨的表面能图及极性和非极性分量总结烃类污染物不仅影响石墨类材料表面的润湿性还影响了其粘附性和吸附性。因此,开发有效的去除和抑制烃类污染物对于操控石墨表面性能是非常关键的。此障碍在未来获得突破后,石墨烯基装置的成功制备也就为时不远了。参考文献Kozbial, A., Zhou, F., Li, Z., Liu, H., & Li, L. Are Graphitic Surfaces Hydrophobic. Accounts of Chemical Research 2016.

  作为“绿色税制”的重要一步,《中华人民共和国环境保护税法》(以下简称税法)将于2018年1月1日起正式开始实施。为了保障税法的实施,6月26日,财政部、税务总局、环境保护部起草《中华人民共和国环境保护税法实施条例》(征求意见稿,以下简称条例),向社会公开征求意见。 《中华人民共和国环境保护税法实施条例(征求意见稿)》为了贯彻落实税收法定原则,提高立法公众参与度,广泛凝聚社会共识,推进开门立法、科学立法、民主立法,我们起草了《环境保护税法实施条例(征求意见稿)》,现向社会公开征求意见。公众可以在2017年7月26日前,通过以下途径和方式提出意见:1.通过国家税务总局网站(网址是:首页的意见征集系统提出意见。2.通过信函方式将意见寄至:北京市海淀区羊坊店西路5号国家税务总局政策法规司(邮政编码100038),并在信封上注明“环境保护税法实施条例征求意见”字样。财政部国家税务总局环境保护部2017年6月26日 环境保护税法是我国第一部明确写入部门信息共享和工作配合机制的单行税法。由于环境保护“费”改“税”,管理部门从环保部门变为了税务机关,两部门如何协作管理、落实税法一直是最受关注的问题。这次公布的条例对环境保护税的纳税人、征税对象、计税依据、税收减免、税收征管等方面进行了说明,对《中华人民共和国环境保护税法》中的条款做了具体的规定。公众可以在7月26日前,通过财政部网站或邮寄信函提出意见。明确纳税人和征税、免税对象条例第二条在税法规定的基础上对环境保护税的纳税人予以细化,明确在企业事业之外,需要缴纳环境保护税的“其他生产经营者”包括个体工商户和其他组织。税法规定,环境保护税的征税对象为大气污染物、水污染物、固体废物和噪声等四类。条例对每一类污染物都作了解释和细化规定,并表明上述应税污染物的具体范围依照税法所附《环境保护税税目税额表》、《应税污染物和当量值表》确定。由于税法明确对工业污水集中处理等场所不予免税,条例对税法中的“城乡污水集中处理场所”的范围界定为“面向社会公众提供公共生活污水(污泥)集中处理服务,并由财政支付运营服务费或者安排运营资金的污水(污泥)集中处理厂站或者设施”;不包括“为工业园区、开发区、工业聚集地以及其他特定区域内的企业事业单位和其他生产经营者提供污水处理服务的设施或者场所,以及企业事业单位和其他生产经营者自建自用的污水处理设施或者场所”。条例还对规模化养殖的范围作了界定,属于规模化养殖的不予免税。但为了促进循环经济发展,如果规模化养殖场能对废弃物进行综合利用和无害化处理,则可以予以免税。细化规定计税依据与方法在税法规定的基础上,由于不同污染排放情况复杂、应税排放量计算困难,条例对相应存在的问题进行了细化的说明。条例明确,税法第七条所称的污染物排放量是指纳税人排放废气中所含应税大气污染物、排放污水中所含应税水污染物的数量。应税大气污染物或者水污染物的“浓度值”,条例明确是指当月自动监测的应税大气污染物小时均值再平均所得数值,或者应税水污染物日均值再平均所得数值,以及当月监测机构每次监测的应税大气污染物、水污染物浓度值。如果纳税人从两个以上排放口排放大气污染物、水污染物,对每一排放口排放的应税污染物分别计算征收环境保护税。减征环境保护税,也应当按照每一排放口的不同应税污染物分别计算。而对于固体废物,根据其排放特点,为便于计算和核查应税排放量,条例规定用“固体废物的排放量=当期固体废物的产生量-当期固体废物的综合利用量-当期固体废物的贮存量-当期固体废物的处置量”的公式进行计算。对纳税人逾期不办理纳税申报、进行虚假纳税申报以及非法倾倒应税固体废物的,为体现惩罚作用,则直接按照按照当期固体废物的产生量计算应税排放量。不仅是固体废物,对所有违反污染物监测管理规定以及违法排放污染物的纳税人,条例均明确其应税污染物排放量按照税法第十条第三项的排污系数、物料衡算方法以污染物产生量计算。排污系数与物料衡算方法将由国务院环境保护主管部门制定并向社会公布。在税法中,对于无法进行实际监测或物料衡算的禽畜养殖业、小型企业和第三产业等小型排污者,附有《禽畜养殖业、小型企业和第三产业水污染物当量值》用于计算。条例中特别说明,对税法未规定的其他畜禽种类,其应税污染物排放量的计算方法由省级环境保护主管部门确定。多部门、不同地区合作管理征税条例明确了地方税务机关、环境保护主管部门以及地方人民政府在在环境保护税征收管理中的职责。条例特别说明,地方税务机关、环境保护主管部门应当在纳税人识别、处理纳税申报数据资料异常、实施环境保护税的税务检查等多个问题上合作解决问题。为了更好地在部门间传递信息,条例说明,要由国务院税务、环境保护主管部门建立全国统一的环境保护税涉税信息共享平台,制定涉税信息共享平台技术标准,明确数据采集、存储、传输、查询和使用规范。通过共享平台,地方税务机关、环境保护主管部门可以实现涉税信息互联互通。环境保护主管部门应当通过平台向税务机关传递在环境保护监督管理中获取的信息,包括排污单位名称和统一社会信用代码、污染物排放口、排放污染物种类等基本信息,排放污染物的监测结果,违法排放行为处理处罚信息等。税务机关则应当通过平台传递纳税人申报的固体废物产生量、综合利用量、贮存量、处置量以及相关证明材料,纳税人申报的应纳税额、减免税额、入库税款、欠缴税款等,纳税人的纳税申报数据资料异常等风险疑点信息,纳税人涉税违法行为处理信息等。当纳税人申报的污染物监测数据与环境保护主管部门传递的相关数据不一致时,条例说明,如果纳税人按照自动监测数据计算应税污染物排放量的,则税务机关应以环境保护主管部门传递的数据为准计算确定纳税人的应纳税额;如果纳税人按照监测机构出具的监测数据计算应税污染物排放量的,则税务机关应以纳税人申报数据与环境保护主管部门传递数据孰高原则计算确定纳税人的应纳税额。此外,条例明确,对于税法第十七条所称应税污染物排放地,是指应税大气污染物和水污染物排放口所在地、固体废物产生地、工业噪声产生地。如果纳税人的应税大气污染物和水污染物排放口与生产经营地位于不同省级行政区的,则由生产经营地税务机关管辖。若税务机关对纳税人跨区域排放污染物的税收管辖有争议,由争议各方依照有利于征收管理的原则逐级协商解决;不能协商一致的,报请共同的上级税务机关决定。

  研究背景凛冬将至,寒潮来袭,结冰是造成许多安全事故的重要原因。飞机防冰/除冰技术一直是航空工业的一个重要研究领域。飞机积冰主要发生在平尾、垂尾和发动机真空罩等外露表面,已成为威胁飞行安全和稳定性的严重问题。研究表明,飞机表面结冰主要是由于大量过冷水滴聚集和冻结造成的,特别是当飞机穿越过冷云层时。本文报告了通过光刻结合化学刻蚀方法制备了稳定的纳米片-微坑结构的超疏水表面,表面的防冰性和超疏水性均优于单一结构表面,且超疏水等级结构表面具有较高的非润湿性,接触角高达173°,滚动角低至4.5°,具有优异的超疏水性能和抗结冰性能,为航空工业的应用提供了一个理想的平台。实验仪器润湿性实验,使用KRÜSS DSA100接触角分析仪。在样品表面滴落4 μl液滴测试接触角和滚动角。重复3次,计算平均值来保证接触角的准确性。为了进一步检验低温润湿性,在-18℃条件下放置样品和去离子水,直到去离子水变成过冷。然后,我们尝试通过在不同样品的表面喷洒过冷的水滴来模拟冻雨的条件。使用高速的相机拍摄,快速比较这些样品的不同润湿性。KRÜSS DSA100接触角分析仪TC40温控腔箱:温控范围-30℃到160°C结论与讨论表面形貌在本节中,我们通过三种不同的处理方法构建了三个超疏水结构表面,目的是分析和研究表面形貌、润湿性和抗冰性能之间的相关性。此外,我们还制备了一个光滑的疏水铝表面作为标准对照,并与三种超疏水表面的抗冰性能进行了比较。三种结构形态的FESEM图像如图1所示。四种类型的表面处理如下:使用FAS-17改性的铝衬底表面(样品1),带有微坑结构FAS-17改性的铝衬底表面(样品2),带有纳米片FAS-17改性的铝衬底表面(样品3),具有分层结构(微坑规则阵列和纳米片)FAS-17改性的铝衬底表面(样品4)。 图1. 通过三种不同的处理获得的分层形态的扫描电镜图像:(a)微坑结构表面(样品2);(b)纳米片结构表面(样品3);(c)微/纳米分层结构表面(样品4)。常温和低温下的润湿性测试如图2所示,通过比较相同样品FAS-17修饰前后的接触角,改性后样品疏水性大幅提高。在光滑的衬底表面(样品1),通过降低表面自由能,液滴接触角可以增加到大约120°。这也证明了通过引入规则排列的CF3基团可以建立超疏水表面,此时表面能最低,为6.7 mJ/m2。样品3和样品4具有良好的超疏水性,使得水滴很容易从这些表面滚落,这可以用Cassie-Baxter模型来详细解释,说明表面的微观结构在提高超疏水性方面起着关键作用。超疏水纳米分层结构表面(样品4)具有较高的非润湿性,接触角高达约173°,滚动角仅仅为4.5°。与其他单结构表面相比,纳米片-微坑分层结构表面的超疏水性优于任何单结构表面,微尺度和纳米尺度结构的结合明显地捕获了更多的空气,导致在液滴下存在一个由无数空气袋构成的密封空气层。 图2. FAS-17改性前后4种表面结果的接触角和滚动角考虑到飞机的实际使用条件,将过冷水滴喷洒在低温下的测试超疏水性和防冰性能,结果表明,样品3和样品4可以防止过冷水滴的积累,表现出良好的超疏水性。相反,喷在样品1和样品2上的过冷水滴则表现出一定程度的亲水性。显然,研究结果证明,具有微/纳米结构的超疏水表面有效地排斥了被喷洒的冷冻水。结论综上所述,我们结合光刻工艺和化学蚀刻方法,巧妙地设计和制备了一种具有抗冰性能的超疏水分层结构表面。超疏水表面比其他单结构表面具有更强的非润湿性,并且具有优异的防冰性能,防止了过冷水滴的积累。因此,具有微/纳米结构的超疏水表面在航空工业中更具有作为飞机防冰材料的潜力。本文有删减,详细请参考原文。 Y. Shen, J. Tao, X. Luo, L. Zhang and Y. Xia, Fabrication of a superhydrophobic surface with a hierarchical nanoflake–micropit structure and its anti-icing properties, RSC Adv., 2017, 7, 9981DOI: 10.1039/C6RA28298A

  KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS研究背景世界卫生组织(WHO)提出了“8020”的目标,即在80岁时保留20颗功能性牙齿。由于牙齿没有任何再生功能,如何确保牙齿健康长寿成为了备受关注的问题。目前的牙齿护理方法(刷牙、漱口、使用牙线、使用牙签等)只是将沉积在牙齿表面的污垢清理干净,然后让它们直接接触新出现的复杂刺激。护理工具的延误或不当使用不仅不能消除外界的不良刺激,有时甚至会导致牙齿损伤。因此,一种更可靠、更有效的日常牙科护理策略正处于迫切需要的阶段。近年来,耐用且生物相容的超疏水材料在生物医学应用中显示出巨大的潜力。然而,据我们所知,目前还没有可用的“添加剂”保护牙齿的方法伴随我们的生活,更不用说将超疏水材料应用于常规牙科护理策略。因此,本文首次提出的由ZnO、FSNs和PDMS(简称ZFP)组成的保护剂可以喷涂在牙齿表面形成具有优异超疏水特性的透明膜,这种安全、方便、高效的牙齿保护策略将超疏水性与光动力学相结合,通过简单的喷涂实现对牙齿的抗粘连、抗菌、抗酸和防污等多种保护作用。图1 ZFP喷涂膜多重防护效果示意图实验方法将上述三种保护剂喷洒在制备的牙片上,干燥后分别得到T-P、T-FP和T-ZFP。采用KRÜSS DSA100 (Germany)液滴形状分析仪测定了不同齿片的水滴角。结果与讨论超疏水性和自清洁性分析为了检测ZFP在牙齿表面的疏水行为,将上述三种保护剂(P、FP和ZFP)喷洒在制备的牙齿切片上以获得T-P、T-FP 和T-ZFP。T-ZFP 的水滴角为 151.00°±0.63°,滚动角为 1.95°±0.25°(图2(a)和2(b))。此外,图2(c)说明了T-ZFP表面和水滴之间的低粘度,这进一步证明了ZFP的超疏水效应。此外,TZFP对不同的液体表现出自清洁效果,而在此期间保持牙齿表面清洁(图3)。我们还惊喜地发现TZFP对血液也表现出出色的超疏水性。上述数据表明,ZFP的超疏水自洁特性可有效防止食物残渣粘附,确保应用于牙齿时的抗污能力。图2 T-ZFP的超疏水性。(a)不同齿片的水滴角。(b) T-ZFP的滚动角。(c) T-ZFP与水滴之间的低粘度。(d)刷洗循环、(e)温度循环和(f) pH值变化处理后水滴角的变化图3 T-ZFP对不同液体的自清洁效果生理稳定性分析与人体接触的牙科材料也应具有生理稳定性。考虑到这一点,测量了T-ZFP在刷涂(每10次为一个循环)、温度循环(4和60°C)和酸处理(pH = 3和7)下的水滴角变化,以验证ZFP保护剂的稳定性。图 2(d) 显示T-ZFP 的接触角随着刷牙次数增加而逐渐减小,但在 100 次后仍保持在 145.0° ± 0.6°。这一现象也说明ZFP可以通过一定时间的刷牙有效去除,促进了其在日常生活中的周期性应用。ZFP的生理稳定性通过在温度循环(4到60 °C之间)和pH变化(从3到7)期间超过150°的稳定接触角得到证明(图2(e)和 2(f))。综上所述,ZFP能够适应口腔内的温度变化,对酸刺激具有稳定的耐受性,从而有效地保护牙齿免受腐蚀。小结本工作针对食物残渣黏附、细菌侵入、酸腐蚀、色素沉着等一系列口腔问题,以及公众难以及时标准地刷牙和使用牙线,研制了一种专为日常牙齿保护的可见光响应型抗菌超疏水剂。ZFP保护剂有效地将超疏水性与光动力学相结合,通过简单的喷涂即可发挥抗粘附、抗菌、耐酸、防污等多种功能。因此,这种增材喷涂ZFP护甲有望成为日常生活中的一种新型牙齿保健策略,为牙齿的健康和美观提供有利保障,适应老龄化社会的发展。本文有删减,详细请参考原文S. Zhao, X. Yang, Y. Xu, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions. Nano Research.

  东曹生命科学(Tosoh Bioscience)是全球知名的色谱分离解决方案供应商,近日发布了一款新型疏水层析填料——TOYOPEARL Phenyl FT-750F,此款填料专为在流穿模式下纯化抗体而开发,即使在低盐浓度洗脱条件下也能有效去除抗体中的多聚体。Phenyl FT-750F的产品特点:超大孔径(>100 nm):有效吸附如多聚体类的大分子杂质强疏水性:即使在低盐浓度下也能实现流穿分离上样量:50-100 g/L resin优异的回收率>95%对于疏水性较弱的样品,也可以采用吸附洗脱模式Phenyl FT-750F的分离选择性:下图所示为Phenyl FT-750F与TOYOPEARL疏水填料家族的其他产品有着不同的分离选择性。抗体吸附力:Phenyl-650M<Butyl-650M<Phenyl FT-750F<Hexyl-650C。图1 Phenyl FT-750F与其他TOYOPEARL疏水填料的分离选择性比较(单克隆抗体)Phenyl FT-750F的流穿模式下抗体的纯化效果:下图是使用Phenyl FT-750F在流穿模式下分离抗体时,在各种上样量及盐浓度条件下均可获得优异的纯度和回收率。可以使用0.15 mol/L NaCl进行洗脱。图2 在不同上样量及盐浓度下纯度与回收率的变化Phenyl FT-750F与市售其他同类HIC填料对比:下表显示了在疏水流穿模式下Phenyl FT-750F分离抗体的得到高纯度、高回收率的单体,优于其他同类市售HIC填料产品。表1 Phenyl FT-750F与市售同类填料产品的比较如需了解本款填料的更多信息,可点击以下链接下载产品介绍资料:

  在低温条件下,室外设备的冻结已经成为一个严重的问题。特别是电路线、道路、飞机机翼、风力涡轮机等基础设施部件结冰对经济和生命安全造成了严重影响。铝(Al)及其合金具有重量轻、稳定性好、韧性高等优点,广泛应用于各个工业领域。然而,酸雨会腐蚀金属基底,冰雨会对铝结构造成严重的冰积。疏冰性被认为是通过保持基底表面尽可能无水和降低冰晶与基底之间的粘附力来延缓或减少冰在表面的积累。超疏水(SHP)表面由于其拒水和自清洁特性而具有疏冰性。Tan等通过水热反应在Al表面形成机械坚固的微纳结构,然后用十六烷基三甲氧基硅烷修饰形成SHP表面。其中水接触角(WCA)和滑动角(SA)采用光学接触角仪进行测量,水滴为10µL。该SHP表面在酸性和碱性环境中都表现出令人印象深刻的疏水性,并表现出显著的自清洁和疏冰性能。图1. (a)裸铝、(b)铝表面微纳和(c)十六烷基三甲氧基硅烷改性SiO2微纳表面的WCA值。(d)不同酸碱溶液在SHP表面静置1min后的静态接触角。(e)在SHP表面静置30min后的水滴(红色1.0,透明7.0,黑色14.0,附有pH试纸)图片。(f)在不同溶液中浸泡30min后的耐酸碱性测试(左)和静态WCA(右):水(上),0.1 M HCl(中),0.1 M NaOH(下)涂层的润湿性主要受两个因素的影响:表面粗糙度和表面能,润湿性可以通过静态WCA可视化。裸铝(图1(a))、具有微纳米SiO2表面的氧化铝(图1(b))和SHP表面(图1(c))的WCA值分别为87°、134°和158°。WCA值的显著变化说明了微纳结构和十六烷基三甲氧基硅烷对SHP表面的重要性。同时,SHP表面的SA值小于5°。SHP表面也采用不锈钢和合金材料(Supplementary Movie 1)。根据Nakajima等人的报道,大的WCA和低的SA预计会导致液滴从表面滚落。图1(d)为pH 1.0 ~ 14.0溶液在SHP表面的静态WCA: WCA在148°~ 158°之间,当pH值接近7.0时,WCA值较大。图1(e)为SHP表面水滴形状(体积约60 μL, pH 1.0 ~ 14.0)。30分钟后形状没有变化。这显示出良好的耐酸性或碱性溶液。图1(f)进一步说明了SHP涂层的耐酸碱性能。左图为实验方法,右图为水(154°)、0.10 M HCl(142°)、0.10 M NaOH(143°)浸泡30 min后的WCA。这些结果表明,SHP涂层在各种酸性/碱性环境下都具有良好的性能。图2. 裸铝和SHP Al的WCA和SA在结冰状态下,进一步测量5次重复实验的WCA和SA,结果如图2所示。SHP表面的WCA约为154°,SA小于8°,而裸露Al表面的WCA约为85°,SA大于10°。因此,在SHP铝表面获得了良好的疏冰性。参考文献: Tan, X., Wang, M., Tu, Y., Xiao, T., Alzuabi, S., Xiang, P., Chen, X., Icephobicity studies of superhydrophobic coating on aluminium. Surface Engineering, 2020, 37(10), 1239–1245.

  水接触角测量仪是一种用于测量液体在固体表面上的接触角的仪器。它的工作原理基于Young-Laplace方程和表面张力的概念。当液体与固体表面接触时,它们之间存在三个界面:液体-气体界面、固体-气体界面和液体-固体界面。根据Young-Laplace方程,液体与固体界面上的接触角θ可以由以下公式计算:cosθ = (γsv - γsl) / γlv其中,γsv是固体-气体界面的表面张力,γsl是液体-固体界面的表面张力,γlv是液体-气体界面的表面张力。水接触角测量仪通常使用一块固体样品作为底座,涂覆待测试液体(如水)在其表面上,并通过图像处理或测量方法来测量液滴在固体表面上的形状。基于这些测量数据,可以计算出接触角θ。材料的亲水性和疏水性是描述固体表面与液体之间相互作用的性质。亲水性是指固体表面与水之间的相互作用性质。如果液滴在固体表面上能够形成较小的接触角(小于90度),则表明该固体具有较好的亲水性。这意味着液体能够在固体表面上迅速展开并与其紧密接触。疏水性是指固体表面与水之间的相互作用性质。如果液滴在固体表面上形成较大的接触角(大于90度),则表明该固体具有较好的疏水性。这意味着液体在固体表面上难以展开,形成球状或滴状,与固体表面接触较少。

  应用 棉织物基导电防火超疏水材料:154.4° 接触角下的微观结构与功能研究

  背景近年来,柔性传感器在人机交互、健康监控、可穿戴电子等领域展现出巨大的应用潜力。棉织物具有天然的皮肤贴合性、良好的柔软性和生物相容性,同时其纤维的多孔编织结构有利于涂层附着,这使得棉织物成为柔性传感器的理想基材之一。目前,常用于制备柔性传感器的活性材料的层状过渡金属卤化物(MXene)具有金属和陶瓷特征的2D纳米结构,表现出优良的焦耳热效应和高耐火性,被广泛用作传感元件的功能组分。但目前还未见将纳米导电材料与离子液体结合起来制备柔性传感器的文献报道。 本研究以价廉易得的棉织物为基材,通过在其表面原位沉积聚多巴胺、MXene和离子液体以构建复合导电层,并构建了杂化低表面层,制备了一种导电防火超疏水棉织物(F-CF)。其中,反应生成的杂化层不仅使粗糙结构更为明显,而且提供了低表面能,再引入长碳链的十六烷基三甲氧基硅烷进一步降低表面能,从而实现超疏水性。然后,对比研究了化学组成和微观结构,测试了其润湿性。 图1 制备过程中不同棉织物的SEM图实验方法与仪器仪器:本文采用德国KRÜSS DSA100液滴形状分析仪测量棉织物的水接触角(WCA)和滚动角(WSA)。DSA100液滴形状分析仪 同时,该超疏水棉织物传感器的自清洁行为也可通过KRÜSS表面张力仪Tensíío的粘附力测试功能进行评估。Tensíío力学法表面张力仪结果与讨论F-CF的超疏水性和自清洁性 图2 F-CF的超疏水性及自清洁行为CF的超疏水性测试结果如图2所示,其中图2(a)右上角的插图为F-CF的水接触角照片。由图可知,不同大小的水滴在F-CF表面呈现圆球或椭球的形态,其水接触角和滚动角分别为154.4°和6.7°。F-CF的超疏水性主要归因于微纳粗糙结构的构建和HPDMS上有机硅链段所提供的低表面能。将F-CF浸入水中,其表面会呈现如图2(b)的银镜现象。这是由于水滴无法进入织物表面的微纳米尺度的空气凹槽,光线在水与空气中的折射率差异使其出现银色光泽。由图2(c)可知,由注射器喷射出的水流接触到F-CF表面后发生溅射,无法润湿织物,体现了表面的超疏水性能。如图2(d)所示,用F-CF的表面反复接触并挤压针头处的液滴,液滴不会从针头上脱落且黏附于织物表面,表现出优异的抗水滴黏附性。图2(e)和图2(f)对比了F-CF和初始棉织物的自清洁能力。水滴能够从F-CF表面滚落并带走污染物,表现出良好的自清洁能力。而未经处理的棉织物不具备自清洁特性,水滴会润湿CF并浸入纤维孔隙,其表面残留有较多的污染物。由图3可知,即使经过数百次的加压-卸压测试后,F-CF传感器依旧表现出超疏水性。 图3 F-CF传感器的超疏水保持性 总结以棉织物为基材,在其表面分别沉积聚多巴胺、MXene和离子液体,并通过酸蒸汽催化正硅酸乙酯与羟基硅油的水解缩合反应构建杂化层,制得一种兼具导电性、防火性和超疏水性的棉织物F-CF。该织物的水接触角和滚动角分别为154.4°和6.7°,具有优异的抗水滴黏附性和良好的自清洁能力。基于F-CF的压阻式压力传感器可用于实时监测包括脉搏、呼吸、手指弯曲、步行、慢跑等各种人体运动,在可穿戴电子、健康智能监控等领域具有广阔的应用前景。参考文献许俊煌,朱洪涛,卢翰,等.基于棉织物的导电防火超疏水涂层的制备及其传感应用.涂料工业,2024,54(12):57-64.

  近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:

  近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。

  近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:

  OPTON微观世界第34期 从荷叶效应到超疏水表面——从自然到人工合成

  前 言在盛夏时节安静的池塘边,正是观赏荷花的好时候。在红花绿叶的点缀下,夏日仿佛多了一丝清凉舒缓。每当提到荷花(莲花),总能想起周敦颐在《爱莲说》中 “予独爱莲之出淤泥而不染,濯清涟而不妖”的诗句。荷花历来被佛教尊为神圣净洁之花,并且极力宣传并倡导学习荷花这种清白、圣洁的精神。另外,李白的诗句“清水出芙蓉,天然去雕饰”,也表明荷花具有天然之美。荷花即青莲,青莲与“清廉”谐音,因此荷花也被用以比喻为官清正,不与人同流合污,这主要是指在仕途中。比如,有一幅由青莲和白鹭组成的名为“一路清廉”的图画,就被很多文人置于自己的书房中。可是,莲为什么可以出淤泥而不染呢?这就要讲到莲花的“自清洁”和“不沾湿”特性了。荷叶效应如果留心观察莲花的叶子,你就会发现荷叶上总是干干净净的,好似不留一点灰尘。这是因为荷叶表面的特殊结构有自我清洁的功能,即荷叶的“自清洁”特性。此外,我们经常会看到这样的场景:当水滴在荷叶上时,水并没有完全铺展开,而是以水珠的形式停留在荷叶上,而且只要叶面稍微倾斜,水珠就会滚离叶面。这就是荷叶的“不沾湿”特性。荷叶的“自清洁”和“不沾湿”特性被统称为“荷叶效应”。这一概念最早是由德国波恩大学的植物学家巴特洛特提出的。图1荷叶效应超疏水特性其实,荷叶的“不沾湿”特性也被称为“超疏水”特性。那么,如何界定“超疏水”这一概念呢?在明确“超疏水”这一概念前,我们要先了解表面化学中的一个概念——接触角。如下图所示,接触角指的是“液-固”界面的水平线与“气-液”界面切线之间通过液体内部的夹角θ。有了这一概念,我们可以很方便地表示液体对固体的润湿情况。当夹角θ小于90°时,我们称该液体可以湿润固体。当θ大于90°时,该液体不能湿润固体。当θ大于150°时,该固体表面具有超疏水特性。通俗地讲,我们可以认为这种固体表面有很强的排斥水的能力。图2 浸润与不浸润的特征 在自然界中,奇异的性质往往是其独特的结构决定的。那么,你肯定会问:“荷叶的特性是否与它的结构有关呢?”答案是肯定的。扫描电子显微镜的发展给我们的科学研究带来了更多的可能,也使得我们能够观察到荷叶的微观结构。通过电子显微镜的成像结果,我们可以清晰地看到荷叶表面有许多突起的“小山包”(这类结构被称为“乳突”如图3(a))。这些乳突的尺寸通常在6微米左右,这些乳突的平均间距在12微米左右。而这些乳突是由许多直径在100纳米左右的纳米蜡质晶体组成。由此可见,荷叶表面存在复杂的“微米-纳米”双重结构,正是这些结构使得荷叶产生了“超疏水”和“自清洁”的双重特性。图3 荷花叶片的sem图像 (a)低倍图像(b) “乳突”高倍图像(c)叶片底部高倍图像(d)“乳突”尺寸对应的接触角曲线分布由荷叶到仿生技术自然界的生物都经历了漫长的演化过程,在物竞天择下,生物自身的结构和功能都经过了长期的筛选、发展和优化,具有极高的效能。荷叶的“自清洁”性能,并不是简单的美观功效,清洁程度直接影响叶片的光合作用效率。那么不仅仅是荷叶,在自然界中具有自清洁功能的生物还有很多种,比如蝴蝶的翅膀具有的超疏水结构,保证蝴蝶翅膀不会粘连露水影响飞行。水黾的脚具有绒毛结构,确保了水黾在水面上能以每秒钟滑行100倍于自身长度的距离,这都由于水黾腿部上有数千根按同一方向排列的多层微米尺寸的刚毛。而这些像针一样的微米刚毛的直径不足3微米,表面上形成螺旋状纳米结构的构槽,吸附在构槽中的气泡形成气垫,从而让水黾能够在水面上自由地穿梭滑行,却不会将腿弄湿。还有蚊子的复眼,它是由许多尺寸均一的微米半球组成,其表面还覆盖有无数精细的纳米乳突结构,这种纳米乳突结构的尖端与雾滴接触的面积无限小,具有理想的超疏水特性,从而确保了蚊子的复眼具有理想的超疏水防雾性能。图4 蝴蝶翅膀,水黾足,蚊子复眼的超疏水结构对自然界演化生成的超疏水结构,科学家们也做了进一步的研究,其超疏水表面的制备方法有多种:溶胶-凝胶法、相分离法、模板法、蚀刻法、化学气相沉积法、自组装法等等,下图为具有独特形状的表面微米阵列(如图5)纳米阵列(如图6),使得它们具有很好的疏水特性。 图5不同形态的人工合成的超疏水结构图6 超疏水结构碳纳米管阵列经过先进结构材料的表面改性,我们常见的水也可以变得很有趣,比如我们可以用手切割水珠(图7),利用涂有超疏水材料的刀片对水滴进行切割(图8)。日常生活上,通过先进疏水材料的应用我们可以使得衣物不再被水或者油污污染,减少洗涤衣物的麻烦。在军事上,由于疏水材料的使用使得水的阻力明显下降,有效地提升了舰载的行驶速度。

  长期以来,在疏水性聚合物分析领域,通常使用示差折光检测器进行 GPC 分析。如果包含微量的主成分聚合物添加剂,因为其具有紫外吸收,所以有时使用 UV 检测器或光电二极管阵列(PDA)检测器,以高灵敏度检测这些微量成分。通过联用示差折光检测器与 UV检测器,可同时分析主成分与微量添加剂,计算聚合物的分子量分布,并且可确认微量成分的 UV 光谱,以进行定性和定量分析。 岛津新一体化高效液相色谱仪 Prominence-i 可连接是差折光检测器 RID-20A。柱温箱内可安装 3 根 30cm 用于 GPC 分析的色谱柱,因此也支持需要使用长色谱柱的应用程序。本文介绍了使用 Prominence-I GPC 系统对聚苯乙稀进行 GPC 分析的示例。使用新一体化高效液相色谱仪 Prominence-i, 通过联用示差折光检测器与 UV 检测器,可计算聚苯乙烯的分子量分布,并且 可确认微量成分的 UV 光谱,进行定性和定量分析。 岛津新一体化高效液相色谱仪 Prominence-i 了解详情,敬请点击《使用Prominence-i GPC 系统测定疏水性聚合物中的添加剂》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国 设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理 商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进 的产品和更加满意的服务,为中国社会的进步贡献力量。

  近日,安光所利用“疏水分子筛”研发抗湿型高性能硫化氢(H2S)传感器,相关成果以“基于Pt锚定CuCrO2(铜铬氧)的高性能H2S气体传感器”,“PDMS(聚二甲基硅氧烷)膜在抗湿、高选择H2S气体传感器中的双重功能”为题,分别发表于ACS Applied Materials & Interfaces和Chemical Communication杂志上。 H2S是一种无色、易燃易爆、有强腐蚀性的剧毒气体,广泛存在于石化、天然气、矿井、下水道、养殖场、废水处理厂、垃圾填埋场等半封闭和高湿度场所。近年来,半导体型H2S传感器取得了长足的进展,包括铜铁矿、氧化锌(ZnO)、氧化铜(CuO)在内的多种氧化物在干燥空气中都对H2S具有较高的响应。然而,传感器在实际使用时必须暴露在湿度环境中,环境中的水汽是一种强干扰性气体,且水汽(湿度)随时间、地点、季节、天气等因素急剧变化,这给传感器的浓度标定带来了较大干扰。此外,H2S是一种强腐蚀性气体,且腐蚀性随湿度增加而增大,导致传感器在高湿度环境下快速腐蚀中毒、寿命大幅缩短,成为传感器走向实际应用的一个重要挑战。 为解决上述问题,安光所激光中心孟钢研究员团队在前期基于Pt单原子敏化CuCrO2的高灵敏H2S传感器基础上,通过热蒸发法在CuCrO2敏感层上蒸镀了一层基于聚二甲基硅氧烷(PDMS)的疏水、透气薄膜。PDMS性质稳定、本征疏水,可有效隔绝环境中水汽的侵入,减弱环境湿度对传感器的影响,同时显著提升传感器在湿度环境中的长期稳定性;此外,PDMS膜中大量微孔可有效阻挡甲硫醇分子(结构、性质同H2S极相似,直径略大),充当“分子筛”的作用,进一步提升了传感器对H2S的选择性,实现了“一石二鸟”的功效。基于PDMS包覆CuCrO2的H2S传感器,工作温度较低(100 ℃)、湿度影响小、响应高(50%相对湿度下对5 ppm H2S的响应高达151)、选择性高、长期稳定性好,为H2S传感器在石化、天然气等领域的实际应用奠定了重要基础。 以上研究工作由中科院国际合作及安徽光机所所长基金等项目资助。

  近期,中国科学院合肥物质科学研究院智能机械研究所刘锦淮课题组研究员杨良保等人成功证实了滴于疏水界面的银溶胶在蒸发过程中能产生更多的三维热点,具有超高的表面增强拉曼散射效应。该研究成果对推动表面增强拉曼散射技术在实际检测中应用具有重要的意义。相关成果发表在英国皇家化学会Nanoscale 杂志上(Nanoscale,2015,7,6619-6626)。近年来,SERS技术由于可以进行无损、高灵敏的指纹识别检测被广泛应用于各大基础研究领域。然而传统意义上SERS 基底的热点是以零维点状、一维线状或二维面状的空间分布构型存在的,这与SERS装置中的激光共焦量三维空间不匹配,如何解决这一矛盾以提高SERS检测的灵敏性仍然是一个很大的挑战。针对以上问题,刘洪林等研究人员发现一滴纳米粒子溶胶随着溶剂的蒸发会形成一种独特的银纳米粒子三维结构。在这种三维结构中,粒子间距均一,且粒子间的作用以及平面上的静电吸附均会减弱,有助于产生大量的三维热点,增强SERS效应。研究人员还发现疏水界面上产生的三维热点比亲水界面拥有更高的灵敏性和更好的稳定性,并通过原位同步辐射小角X射线衍射(SR-SAXS)对这一不同检测结果的内在机理进行探索解。

标签:
相关推荐
  • 首页[优游注册]平台登录
  • 香格里拉娱乐-地址
  • 开丰娱乐平台-哪个旗下的
  • 天运-天运注册_官方注册平台
  • 天运-天运注册-「全球站注册」
  • 首页[速盈平台]首页
  • 首页:大摩注册:首页
  • 天辰-天辰注册-平台用户服务中心
  • 主页·『摩天注册』·主页
  • 利澳娱乐-招商